報(bào)告題目: The structure of 3-pyramidal group
報(bào)告人:高小芳
報(bào)告時(shí)間: 2024年9月20日14:00-15:30
報(bào)告地點(diǎn):數(shù)學(xué)與統(tǒng)計(jì)學(xué)院4樓會(huì)議室
專家簡介:
高小芳,女,2020年畢業(yè)于湖北民族大學(xué)基礎(chǔ)數(shù)學(xué)專業(yè),獲碩士學(xué)位;2024年畢業(yè)于巴西利亞大學(xué)基礎(chǔ)數(shù)學(xué)專業(yè),獲博士學(xué)位。主要研究有限群,發(fā)表SCI論文2篇,參與2項(xiàng)國家自然科學(xué)基金。
報(bào)告摘要:
A combinatorial block design D is called 3-pyramidal if there exists a subgroup G of Aut(D) fixing 3 points and acting regularly on the other points. If this happens, we say that the design is 3-pyramidal under G. If D is a Kirkman Triple System, it is known that such a group G has precisely 3 involutions, all conjugate to each other. In this talk, we will discuss the groups with this property.