講座題目:Tensor Products of Coherent Configurations
講座專家:陳剛(華中師范大學教授/博士生導師)
講座對象:學院教師、碩士生、本科生
講座時間:2021年6月4日下午
講座地點:數(shù)學與統(tǒng)計學院3401教室
內(nèi)容摘要:A Cartesian decomposition of an arbitrary coherent configuration $\cX$ is defined so that every tensor decomposition of $\cX$ comes from a certain Cartesian decomposition. It is proved that if $\cX$ is thick, then there is a unique maximal Cartesian decompostion of $\cX$, i.e. there is exactly one internal tensor decompostion of $\cX$ into indecomposable components. In particul-ar, this implies that an analog of the Krull-Schmidt theorem for the thick coherent configurations.A polynomial-time algorithm for finding the maximal Cartesian decompostion of a thick coherent configuration is constructed. This is joint work with Ilia Ponomarenko.
專家簡介:陳剛,華中師范大學教授,博士生導師。2005年畢業(yè)于武漢大學數(shù)學統(tǒng)計學院,并取得理學博士學位。2017年晉升為華中師范大學數(shù)學與統(tǒng)計學學院教授。曾主持國家自然科學基金天元基金,國家自然科學基金青年基金,國家自然科學基金面上項目2項,國家自然科學基金國際合作交流(中俄)項目等。研究方向為代數(shù)學,特別是表代數(shù)和Schur環(huán)。近年來在國內(nèi)外數(shù)學期刊J. Algebra等發(fā)表論文20余篇。